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Abstract: We discuss properties of a new class of p-brane models, describing intrinsically lightlike branes for any
world-volume dimension, in various gravitational backgrounds of interest in the context of black hole
physics. One of the characteristic features of these lightlike p-branes is that the brane tension appears
as an additional nontrivial dynamical world-volume degree of freedom. Codimension one lightlike brane
dynamics requires that bulk space with a bulk metric of spherically symmetric type must possess an event
horizon which is automatically occupied by the lightlike brane while its tension evolves exponentially with
time. The latter phenomenon is an analog of the well known “mass inflation” effect in black holes.
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1. Introduction

The behavior of matter near horizons of black holes hasbeen the subject of several interesting investigations [1–5]. One particularly intriguing effect was the “mass in-flation” [4, 5] which takes place, for example, for mat-ter accumulating (blue shifting) near the inner Reissner-Nordström horizon.
In the context of the problem where we consider matter liv-ing close to, or in fact on, the horizons of black holes, thenotion of lightlike branes becomes particularly relevant.
∗E-mail: guendel@bgumail.bgu.ac.il
†E-mail: alexk@bgumail.bgu.ac.il
‡E-mail: nissimov@inrne.bas.bg (Corresponding author)
§E-mail: svetlana@inrne.bas.bg

Let us recall that lightlike branes (LL-branes, for short) areof particular interest in general relativity primarily due totheir role: (i) in describing impulsive lightlike signals aris-ing in cataclysmic astrophysical events [6]; (ii) as basic in-gredients in the so called “membrane paradigm” theory [7]of black hole physics; (iii) in the context of the thin-walldescription of domain walls coupled to gravity [8–11].More recently, LL-branes became significant also in thecontext of modern non-perturbative string theory, in par-ticular, as the so called H-branes describing quan-tum horizons (black hole and cosmological) [12], as wellappearing as Penrose limits of baryonic D(=Dirichlet)branes [13].In the original papers [8–11] LL-branes in the context ofgravity and cosmology have been extensively studied froma phenomenological point of view, i.e., by introducing themwithout specifying the Lagrangian dynamics from which
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they may originate. In a recent paper [14] brane actionsin terms of their pertinent extrinsic geometry have beenproposed which generically describe non-lightlike branes,whereas the lightlike branes are treated as a limiting case.On the other hand, we have proposed in a series of recentpapers [15–21] a new class of concise Lagrangian actions,among them – Weyl-conformally invariant ones, providinga derivation from first principles of the LL-brane dynamics.In Section 2 of the present paper we extend our previousconstruction (which was restricted to odd world-volumedimensions) to the case of LL-brane actions for arbitraryworld-volume dimensions.In Section 3 we discuss the properties of LL-brane dy-namics moving as test brane in generic gravitational back-grounds. The case with two extra dimensions (codimen-sion two LL-branes) was studied in a recent paper [22] fromthe point of view of “braneworld” scenarios [23–28] (for areview, see [29, 30]). Unlike conventional braneworlds,where the underlying branes are of Nambu-Goto type(i.e., describing massive brane modes) and in their groundstate they position themselves at some fixed point inthe extra dimensions of the bulk space-time, our light-like braneworlds perform in the ground state non-trivialmotions in the extra dimensions – planar circular, spiralwinding etc depending on the topology of the extra di-mensions. In the present paper we concentrate on thespecial case of codimension one LL-branes which is qual-itatively different and needs separate study. Here theconsistency of LL-brane dynamics as test brane moving inexternal gravitational fields dictates that the bulk space-time with a bulk metric of spherically symmetric type (seeEq. (33) below) must possess an event horizon which isautomatically occupied by the LL-brane (“horizon strad-dling” according to the terminology of Ref. [10]). This is ageneralization for any (p+1) world-volume dimensions ofthe results previously obtained in Refs. [15–21] for light-like membranes (p = 2) in D = 4 bulk space-time.In Section 4 we study several cases of “horizon straddling”solutions obtained from our LL-brane world-volume action(1). For the inner Reissner-Nordström horizon we find atime symmetric “mass inflation” scenario, which also holdsfor de Sitter horizon. In this case the dynamical tensionof the LL-brane blows up as time approaches ±∞ dueto its exponential quadratic time dependence. For theSchwarzschild and the outer Reissner-Nordström hori-zons, on the other hand, we obtain “mass deflationary”scenarios where the dynamical LL-brane tension vanishesat large positive or large negative times. Another set ofsolutions with asymmetric (w.r.t. t → −t) exponential lin-ear time dependence of the LL-brane tension also exists.In the latter case, by fine tuning one can obtain a constanttime-independent brane tension as a special case.

2. World-volume actions of lightlike
branes
We propose the following reparametrization invariant ac-tion describing intrinsically lightlike p-branes for anyworld-volume dimension (p + 1) (for previous versions,cf. [15–21]):
S = −∫ dp+1σ Φ(φ) [12γab∂aXµ∂bXνGµν(X )− L(F 2)]

(1)using notions and notations as follows:
• Alternative non-Riemannian integration measuredensity Φ(φ) (volume form) on the p-brane world-volume manifold:

Φ(φ) ≡ 1(p+ 1)!εI1...Ip+1εa1...ap+1∂a1φI1 . . . ∂ap+1φIp+1 (2)
instead of the usual √−γ. Here {

φI
}p+1
I=1 areauxiliary world-volume scalar fields; γab (a, b =0, 1, . . ., p) denotes the intrinsic Riemannian metricon the world-volume, and γ = det ‖γab‖. Note that

γab is independent of φI .
• Xµ(σ ) are the p-brane embedding coordinates inthe bulk D-dimensional space time with bulk Rie-mannian metric Gµν(X ); µ, ν = 0, 1, . . . , D − 1,(σ ) ≡ (σ 0 ≡ τ, σ 1, . . . , σp), ∂a ≡ ∂

∂σa .
• Auxiliary (p − 1)-rank antisymmetric tensor gaugefield Aa1...ap−1 on the world-volume with p-rankfield-strength and its dual:

Fa1...ap = p∂[a1Aa2...ap ],
F ∗a = 1

p! εaa1...ap
√−γ Fa1...ap .

(3)

• L
(
F 2) is arbitrary function of F 2 with the short-hand notation:

F 2 ≡ Fa1...apFb1...bpγa1b1 . . . γapbp . (4)
Let us note the simple identity:

Fa1...ap−1bF ∗b = 0, (5)
which will play a crucial role in the sequel.
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Remark 2.1.For the special choice L(F 2) = (F 2)1/p the action (1) be-comes manifestly invariant under Weyl (conformal) sym-
metry: γab −→ γ′ab = ρ γab, φI −→ φ′ I = φ′ I(φ) withJacobian det∥∥∥ ∂φ′ I∂φJ

∥∥∥ = ρ. In what follows we will considerthe generic Weyl non-invariant case.
Remark 2.2.In our previous papers [15–21] we have used a differ-ent form for the Lagrangian of the auxiliary world-volumegauge field in the brane action (1):
L(F 2) =√FabFcdγacγbd with Fab = ∂aAb − ∂bAa, (6)

i.e., with ordinary vector gauge field for any p. However,it has been shown in Ref. [21] that for the choice (6) theaction (1) describes consistent brane dynamics only for
odd (p + 1) world-volume dimensions. This is due to thefollowing relation (Eq. (13) in Ref. [21], which is a con-sequences from the equation of motion w.r.t. γab – thecounterpart of Eq. (11) below):

det ‖ (∂aX∂bX ) ‖= (−4L′(F 2))p+1 (− det ‖γab‖) (det ‖iFab‖)2 . (7)
The latter relation implies that for (p + 1) =even world-volume dimensions the r.h.s. of (7) is strictly positive (be-cause of the Lorentzian signature of the intrinsic metric
γab) contradicting the requirement that the determinantof the induced metric in the l.h.s of (7) should be neg-ative conforming with the Lorentzian signatures of bothworld-volume and embedding space-time metrics. Hence-forth, we will employ our new action (1) with the (p− 1)-rank auxiliary world-volume antisymmetric tensor gaugefields (3).
Rewriting the action (1) in the following equivalent form:
S = −∫ dp+1σ χ√−γ

[12γab∂aXµ∂bXνGµν(X )− L(F 2)] ,
χ ≡ Φ(φ)

√−γ , (8)
with Φ(φ) the same as in (2), we find that the compos-ite field χ plays the role of a dynamical (variable) brane
tension. Let us note that the notion of dynamical branetension has previously appeared in different contexts inRefs. [31–33].Before proceeding, let us mention that both the auxiliaryworld-volume scalars φI entering the non-Riemannian in-tegration measure density (2), as well as the intrinsic

world-volume metric γab are non-dynamical degrees offreedom in the action (1), or equivalently, in (8). Indeed,there are no (time-)derivates w.r.t. γab, whereas the action(1) (or (8)) is linear w.r.t. the velocities .φI . Thus, (1) (or(8)) is a constrained dynamical system, i.e., a system withgauge symmetries including the gauge symmetry underworld-volume reparametrizations (about the Hamiltoniantreatment of (1), see the remarks after Eq. (11) below). Onthe other hand, the dynamical brane tension χ (8), be-ing a ratio of two world-volume scalar densities, is itselfa well-defined reparametrization-covariant world-volume
scalar field.Introducing a short-hand notation for the induced metric:

(∂aX∂bX ) ≡ ∂aXµ∂bXνGµν , (9)
we can write the equations of motion obtained from (1)w.r.t. measure-building auxiliary scalars φI and γab as:

12γcd (∂cX∂dX )− L(F 2) = M, (10)
where M is an integration constant;

12 (∂aX∂bX )− pL′(F 2)Faa1...ap−1γa1b1
. . . γap−1bp−1Fbb1...bp−1 = 0. (11)

Since, as mentioned above, both φI and γab are non-dynamical degrees of freedom, both Eqs. (10)–(11) arein fact non-dynamical constraint equations (no second-order time derivatives present). Their meaning as con-straint equations is best understood within the frameworkof the Hamiltonian formalism for the action (1) (or (8)). Thelatter can be developed in strict analogy with the Hamil-tonian formalism for a simpler class of modified p-branemodels based on the alternative non-Riemannian integra-tion measure density (2), which was previously proposedin [34] (for details, we refer to Sections 2 and 3 of [34]). Inparticular, Eqs. (11) can be viewed as p-brane analoguesof the string Virasoro constraints.Thus, Eqs. (10)–(11) are particular manifestation in thecase of (1) of the general property in any dynamicalsystem with gauge symmetries, i.e., a system with con-straints a’la Dirac [35–37] – variation of the action w.r.t.non-dynamical degrees of freedom (Lagrange multipliers)yields non-dynamical constraint equations.Taking the trace in (11) and comparing with (10) impliesthe following crucial relation for the Lagrangian function
L
(
F 2):

L
(
F 2)− pF 2L′(F 2)+M = 0, (12)
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which determines F 2 (4) on-shell as certain function of theintegration constant M (10), i.e.

F 2 = F 2(M) = const. (13)
The second and most profound consequence of Eqs. (11)is due to the identity (5) which implies that the inducedmetric (9) on the world-volume of the p-brane model (1)is singular (as opposed to the induced metric in the caseof ordinary Nambu-Goto branes):

(∂aX∂bX )F ∗b = 0,
i.e. (∂FX∂FX ) = 0, (∂⊥X∂FX ) = 0, (14)

where ∂F ≡ F ∗a∂a and ∂⊥ are derivatives along the tan-gent vectors in the complement of F ∗a.Thus, we arrive at the following important conclusion: ev-ery point on the surface of the p-brane (1) moves with thespeed of light in a time-evolution along the vector-field
F ∗a which justifies the name LL-brane (Lightlike-brane)model for (1).Before proceeding let us point out that we can add [22] tothe LL-brane action (1) natural couplings to bulk Maxwelland Kalb-Ramond gauge fields. The latter do not affectEqs. (10) and (11), so that the conclusions about on-shellconstancy of F 2 (13) and the lightlike nature (14) of the
p-branes under consideration remain unchanged.The remaining equations of motion w.r.t. auxiliary world-volume gauge field Aa1...ap−1 and Xµ produced by the action(1) read:

∂[a (F ∗cγb]c χL′(F 2)) = 0, (15)
∂a
(
χ
√
−γγab∂bXµ)

+ χ
√
−γγab∂aXν∂bX λΓµνλ(X ) = 0. (16)

Here χ is the dynamical brane tension as in (8),
Γµνλ = 12Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) (17)

is the Christoffel connection for the external metric, and
L′(F 2) denotes derivative of L(F 2) w.r.t. the argument F 2.Invariance under world-volume reparametrizations allowsto introduce the standard synchronous gauge-fixing con-ditions:

γ0i = 0 (i = 1, . . . , p), γ00 = −1. (18)
Also, in what follows we will use a natural ansatz for theauxiliary world-volume gauge field-strength:

F ∗i = 0 (i = 1, . . ., p), i.e. F0i1...ip−1 = 0, (19)

the only non-zero component of the dual field-strengthbeing:
F ∗0 = 1

p! εi1...ip√
γ(p) Fi1...ip ,

γ(p) ≡ det ‖γij‖ (i, j = 1, . . . , p),
F 2 = p! (F ∗0)2 = const.

(20)

According to (14) the meaning of the ansatz (19) is thatthe lightlike direction F ∗a∂a ' ∂0 ≡ ∂τ , i.e., it coincideswith the brane proper-time direction. Biancchi identity
∇aF ∗a = 0 together with (19)–(20) implies:

∂0Fi1...ip = 0 −→ ∂0√γ(p) = 0. (21)
Using (18) and (19) the equations of motion (11), (15) and(16) acquire the form, respectively:

(∂0X ∂0X ) = 0,(∂0X ∂iX ) = 0,(
∂iX ∂jX

)
− 2a0 γij = 0 (22)

(Virasoro-like constraints), where the M-dependent con-stant a0:
a0 ≡ F 2L′(F 2) ∣∣F2=F2(M) (23)

must be strictly positive;
∂iχ = 0; (24)

−
√
γ(p)∂0 (χ∂0Xµ) + ∂i

(
χ
√
γ(p)γij∂jXµ

)
+χ√γ(p) (−∂0Xν∂0X λ + γkl∂kXν∂lX λ)Γµνλ = 0. (25)

3. Lightlike brane dynamics in grav-
itational backgrounds
Let us split the bulk space-time coordinates as:

(Xµ) = (xa, yα ) ≡ (x0 ≡ t, xi, yα) ,
a = 0, 1, . . . , p, i = 1, . . . , p,
α = 1, . . . , D − (p+ 1), (26)

and consider background metrics Gµν of the form:
ds2 = −A(t, y)(dt)2 + C (t, y)gij (~x)dxidxj+ Bαβ(t, y)dyαdyβ . (27)
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Here we will discuss the simplest non-trivial ansatz forthe LL-brane embedding coordinates:
Xa ≡ xa = σa, Xp+α ≡ yα = yα (τ), τ ≡ σ 0. (28)

With (27) and (28), the constraint Eqs. (22) yield:
− A+ Bαβ

.yα .yβ= 0, Cgij − 2a0γij = 0, (29)
where .yα≡ d

dτy
α . Second Eq. (29) together with the lastrelation in (21) implies:

d
dτ C (y(τ)) = (∂tC+ .yα ∂C

∂yα

) ∣∣∣∣
t=τ,y=y(τ) = 0. (30)

The second-order Eqs. (25) for X 0 ≡ t and Xp+α ≡ yαyield accordingly:
∂τχ + χ

A

[12∂tA+ .yα ∂A
∂yα + 12 .yα .yβ ∂tBαβ

+pa0
C

.yα ∂C
∂yα

] ∣∣∣∣∣
t=τ,y=y(τ) = 0, (31)

∂τ
(
χ

.yα
)+ χ

[
Bαβ

(12 ∂A
∂yα + .yγ ∂tBβγ + pa0

C
∂C
∂yβ

)
+ .yβ .yγ Γαβγ] ∣∣∣∣∣

t=τ,y=y(τ) = 0, (32)
where Γαβγ is the Christoffel connection for the metric Bαβin the extra dimensions (cf. (27)).LL-brane equations (29)–(32) for codimension two (i.e., for
D − (p + 1) = 2) have been studied in Ref. [22] from thebraneworld point of view. The case of codimension oneLL-branes moving in gravitational backgrounds (i.e., for
D = p+ 2) is qualitatively different and is the subject ofthe discussion in what follows.In the latter case the metric (27) acquires the form of ageneral spherically symmetric metric:
ds2 = −A(t, y)(dt)2 + C (t, y)gij (~θ)dθidθj + B(t, y)(dy)2,(33)where ~x ≡ ~θ are the angular coordinates parametrizingthe sphere Sp.Eqs. (29)–(31) now take the form:
−A+ B

.y2 = 0,
i.e.

.y = ±√A
B , ∂tC+ .y ∂yC = 0, (34)

∂τχ + χ
[
∂t ln√AB ± 1√

AB
(
∂yA+ pa0∂y lnC)] = 0,(35)whereas Eq. (32) becomes a consequence of the aboveones.In what follows we will consider the following subclassesof background metrics (33):(i) Static spherically symmetric metrics in standard coor-dinates:

A = A(y), B(y) = A−1(y), C (y) = y2, (36)
where y ≡ r is the radial-like coordinate. In the caseof (36), Eqs. (34) imply:

.y= 0, i.e. y(τ) = y0 = const, A(y0) = 0. (37)
In other words, the equations of motion of the LL-brane re-quire that the latter positions itself on a spherical-like hy-persurface (second Eq. (37)) in the bulk space-time whichin addition must be a horizon of the background metric(last Eq. (37), cf. (33)).The next Eq. (35) reduces in the case of (36) to:

∂τχ ± χ
(
∂yA

∣∣∣
y=y0 + 2pa0

y0
) = 0, (38)

with the obvious solution:
χ(τ) = χ0 exp{∓τ (∂yA∣∣∣

y=y0 + 2pa0
y0

)}
,

χ0 = const. (39)
Thus, we find a time-asymmetric solution for the dynam-ical brane tension which (upon appropriate choice of thesigns (∓) depending on the sign of the constant factor inthe exponent on the r.h.s. of (39)) exponentially “inflates”for large times. In the particular case of fine tuning ofparameters:

∂yA
∣∣∣
y=y0 + 2pa0

y0 = 0, (40)
we obtain a constant solution χ = χ0.(ii) Spherically symmetric metrics in Kruskal-like coordi-nates:

A = B, A = A
(
y2 − t2) , C = C

(
y2 − t2) , (41)

where (t, y) play the role of Kruskal’s (v, u) coordinatesfor Schwarzschild metrics [38, 39]. In the case of (41),Eqs. (34) yield:
.y= ±1, i.e. y(τ) = ±τ, (

y2 − t2) ∣∣∣
t=τ,y=y(τ) = 0,(42)
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i.e., again the LL-brane locates itself automatically on thehorizon. Eq. (35) reduces accordingly to:
∂τχ + τ 2pa0 C ′(0)

A(0)C (0) χ = 0, (43)
i.e. χ(τ) = χ0 exp{−τ2 pa0 C ′(0)

A(0)C (0)
}
. (44)

Thus, we find a time-symmetric “inflationary” or “defla-tionary” solution for the dynamical brane tension depend-ing on the sign of the constant factor in the exponent onthe r.h.s. of (44).(iii) “Cosmological”-type metrics:
A = 1, B = S2(t), C = S2(t) f2(y), (45)

i.e.:
ds2 = −(dt)2 + S2(t) [(dy)2 + f2(y)gij (~θ)dθidθj] ,(46)with θi parametrizing the p-dimensional sphere Sp. Inthis case Eqs. (34) give:
.y = ± 1

S(τ) , C
∣∣
t=τ,y=y(τ)≡ S2(τ) f2(y(τ)) = 1

c20 ,
c0 = const, (47)

implying:
.y= c0f(y(τ)). (48)Eq. (35) reduces in the case of (45) to:

∂τχ + χ ∂τSS (1− 2pa0) = 0
−→ χ(τ) = χ0(S(τ))2pa0−1. (49)

Here again, for the special choice of the integration con-stant M (10) such that the constant a0 (23) is fine-tunedas a0 = 12p , we obtain a constant solution χ = χ0.

4. Examples
As a first example of lightlike brane tension’s “infla-tion”/“deflation” (44) let us consider de Sitter embeddingspace metric in Kruskal-like (Gibbons-Hawking) coordi-nates [40]:
ds2 = A

(
y2 − t2) [−(dt)2 + (dy)2]+ R2 (y2 − t2)gij (~θ)dθidθj , (50)

A(y2 − t2) = 4
K (1 + y2 − t2)2 ,

R(y2 − t2) = 1√
K

1− (y2 − t2)1 + y2 − t2 .
(51)

Substituting:
A(0) = 4

K ,

C (0) ≡ R2(0) = 1
K ,

C ′(0) ≡ 2R(0)R ′(0) = − 4
K

(52)

into expression (44) we get for the dynamical brane ten-sion (recall that the cosmological constant K from (51) andthe constant a0 (23) are strictly positive):
χ(τ) = χ0 exp{τ2 pa0K} , (53)

i.e., exponential “inflation” at τ → ±∞ for the brane ten-sion of lightlike branes occupying de Sitter horizon.The second example is Schwarzschild background metricin Kruskal coordinates [38, 39, 41] (here we take D =
p+ 2 = 4, i.e., i, j = 1, 2):
ds2 = A

(
y2 − t2) [−(dt)2 + (dy)2]+ R2 (y2 − t2)gij (~θ)dθidθj , (54)

A = 4R30
R exp{− RR0

}
,(

R
R0 − 1) exp{ R

R0
} = y2 − t2,
R0 ≡ 2GNm.

(55)

Calculating A(0) , C (0) ≡ R2(0) and C ′(0) ≡ 2R(0)R ′(0)from (55) we obtain for (44):
χ(τ) = χ0 exp{−τ2 a0

R20
}
, (56)

i.e., exponential “deflation” at τ → ±∞ for the branetension of lightlike branes sitting on the Schwarzschildhorizon.
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Next, we consider Reissner-Nordström background metric in two different Kruskal-like coordinate systems of the generalform (here again we take D = p+ 2 = 4, i.e., i, j = 1, 2):
ds2 = A

(
y2 − t2) [−(dt)2 + (dy)2]+ R2 (y2 − t2)gij (~θ)dθidθj . (57)

The first one is appropriate for the region around the outer Reissner-Nordström horizon R = R(+), i.e., for R > R(−), thelatter being the inner R = R(−) Reissner-Nordström horizon:
y2 − t2 = R − R(+)(

R − R(−))R2(−)/R2(+) exp{R R(+) − R(−)
R2(+)

}
, (58)

A
(
y2 − t2) = 4R4(+) (R − R(−))1+R2(−)/R2(+)(

R(+) − R(−))2 R2 exp{−R R(+) − R(−)
R2(+)

}
. (59)

Accordingly, the second Kruskal-like coordinate system is appropriate for the region around the inner Reissner-Nordström horizon R = R(−), i.e., for R < R(+):
y2 − t2 = R − R(−)(

R − R(+))R2(+)/R2(−) exp{R R(−) − R(+)
R2(−)

}
, (60)

A
(
y2 − t2) = 4R4(−) (R(+) − R)1+R2(+)/R2(−)(

R(−) − R(+))2 R2 exp{−R R(−) − R(+)
R2(−)

}
. (61)

Formula (44) for the brane tension in the case of (58)–(59)specializes to:
χ(τ) = χ0 exp{−τ2 a0

R2(+)
(1− R(−)

R(+)
)}

, (62)
i.e., we find exponentially “deflating” tension for a lightlikebrane sitting on the outer Reissner-Nordström horizon – aphenomenon similar to the case of lightlike brane sittingon Schwarzschild horizon (56). In the case of (60)–(61)formula (44) becomes:

χ(τ) = χ0 exp{τ2 a0
R2(−)

(
R(+)
R(−) − 1)} , (63)

i.e., we obtain exponentially “inflating” tension for a light-like brane occupying the inner Reissner-Nordström hori-zon – an effect similar to the exponential brane tension“inflation” on de Sitter horizon (53). In the case of ex-tremal Reissner-Nordström horizon, i.e. when R(+) = R(−),where both “deflating” (62) and “inflating” (63) solutionsshould match, the only solution for the brane tension isthe constant one χ = χ0.

Finally, as an example for “inflation”/“deflation” behaviorof the dynamical lightlike brane tension χ in cosmological-type embedding space-time (46) let us consider Friedman-Robertson-Walker metrics, i.e., background metrics of theform (46), where (see e.g. [42]):
f(y) = y, f(y) = siny, f(y) = sinhy. (64)

Solving Eqs. (47)–(48) yields for each choice (64) of f(y)correspondingly:
f(y) = y → y(τ) = y0ec0τ ,
S(t) = ± 1

c0 y0 e−c0 t ,
(65)

f(y) = siny → y(τ) = 2 arctan (ec0(τ+τ0)) ,
S(t) = ± 1

c0 cosh (c0(t + τ0)) , (66)
f(y) = sinhy → y(τ) = ln 1 + e−c0(τ+τ0)1− e−c0(τ+τ0) ,
c0 > 0, S(t) = ∓ 1

c0 sinh (c0(t + τ0)) , (67)
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where y0, τ0 = const. Inserting the expressions (65)–(67) for S(t) into Eq. (49) yields a time-asymmetric “in-flation”/“deflation” of the brane tension χ at τ → ±∞,except for the “fine tuned” case a0 = 12p where we get aconstant χ = χ0.Let us recall that the metrics (46) with any of the threechoices (64) for f(y) and the corresponding expressions for
S(t) given by (65)–(67) represents de Sitter space-timein various coordinatizations different from the Gibbons-Hawking one (50)–(51) (here |c0| = K with c0 and Kfrom (65)–(67) and (51), respectively). Let us also stressthe qualitative difference between the solutions for thebrane tension of lightlike branes occupying de Sitterhorizons: time-asymmetric “inflation”/“deflation” behavior(49) with exponential linear time dependence in Friedman-Robertson-Walker coordinates versus strictly “inflation-ary” behavior (53) with exponential quadratic time depen-dence in Gibbons-Hawking (Kruskal-like) coordinates.
5. Discussion and conclusions
In the present paper we presented a systematic La-grangian formulation of lightlike p-branes in arbitrary(p + 1) world-volume dimensions, whose brane tensionbecomes an additional nontrivial dynamical degree offreedom. Further, we have shown that codimension onelightlike branes can move in gravitational backgroundsof spherically symmetric type provided the latter possessevent horizons and, moreover, these horizons are automat-ically occupied (“straddled”) by the lightlike branes.For more conventional type of matter, a process known as“mass inflation” [4, 5] leads to matter accumulation on cer-tain horizons (like the inner Reissner-Nordström horizon)and, therefore, is somewhat similar to the phenomenon ofautomatic positioning of lightlike branes on black hole orcosmological horizons. For the standard “mass inflation”one defines a mass function (not related to the externalmass of the black hole) which grows without bound as thematter focuses on the horizon. The natural analog of themass function in the case of lightlike branes appears to bethe dynamical brane surface tension. We study the timedependence of the dynamical brane tension of lightlikebranes occupying diverse horizons.Employing appropriate ansätze for various sets ofKruskal-like coordinates (Gibbons-Hawking coordi-nates [40] in the case of de Sitter space) we findsolutions for the lightlike branes of (1) located at theinner Reissner-Nordström horizon or at the de Sittercosmological horizon, respectively, such that the dynam-ical brane tension undergoes time-reflection symmetric“mass inflation”, i.e., it approaches exponentially arbitrary

large values for τ → ±∞. Although the present resultfor dynamical brane tension “inflation” at the innerReissner-Nordström horizon parallels (except for thetime-reflection symmetry here obtained) the known“mass inflation” phenomenon for standard matter, theaccompanying result about brane tension “inflation” atde Sitter space horizon represents something totallynew with no analog within the standard matter “massinflation” and, therefore, it is a unique feature of lightlikebranes.In contrast, using the same ansätze with Kruskal-like co-ordinates, we find that lightlike branes undergo “mass de-flation”, i.e., their dynamical brane tension going to zerofor τ → ±∞ when they are located at the outer Reissner-Nordström or the Schwarzschild horizon.Other types of ansätze natural for standard coordinatesshow that for all kinds of horizons there are time-asymmetric “mass inflation” or “mass deflationary” solu-tions for the dynamical lightlike brane tension and, for afine tuning – also solutions with constant brane tensiondo exist. In particular, for de Sitter horizon in cosmo-logical (Friedman-Robertson-Walker) coordinates we ob-tain time-asymmetric “inflation”/“deflation” with exponen-tial linear time dependence in contrast to the strict “massinflation” at Sitter horizon in Gibbons-Hawking (Kruskal-like) coordinates with exponential quadratic time depen-dence.Let us stress that in the present paper we have discussedthe properties of LL-brane dynamics as test branes mov-ing in various gravitational backgrounds, i.e., we havenot taken into account the back-reaction of LL-branes onthe geometry and the physical properties of the embed-ding space-time. In a forthcoming paper we are study-ing the important issue of self-consistent solutions forbulk gravity-matter systems (e.g., Einstein-Maxwell-type)coupled to lightlike branes, i.e., accounting for its back-reaction, where the latter: (i) serve as a source for grav-ity and electromagnetism, (ii) dynamically produce space-varying cosmological constant, and (iii) trigger non-trivialmatching of two different geometries of de-Sitter/black-hole type across common horizon spanned by the light-like brane itself. In fact, we have already started theabove study in our previous papers [15, 19–21] in the sim-plest case of horizon matching of two different spherically-symmetric space-times where the pertinent lightlike braneoccupying the common horizon has constant dynamicaltension (“static soldering” in the terminology of Ref. [10]).One of the physically interesting cases is a solution withde Sitter interior region with dynamically generated cos-mological constant through the coupling to the LL-brane,and an outer region with Schwarzschild or Reissner-Nordström geometry, i.e., a non-singular black hole.
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